Abstract:With the embedding of digital intelligence technology into the servitization process of manufacturing enterprises,the resources and capabilities of enterprises change,affecting the components of business model and driving business model innovation,but the pathway to business model innovation driven by digital intelligence servitization is still to be explored. This paper adopts fsQCA method,to study how the digital intelligence servitization drives business model innovation,and how enterprises can choose appropriate strategies based on their own resource-capability endowments to realize business model innovation. The results are as follows.①There is no single necessary condition leading to high-level/non-high-level business model innovation.②The paths to high-level business model innovation driven by digital intelligence servitization can be summarized into four categories including“service capability-driven through the combination of talents and capital”,“dual-driven by competitive capability and service capability”,“triple resource-guaranteed by talent,capital,and technology”,“competitiveness-driven through the combination of capital and technology”. The lack of financial resources and market competitiveness is an important reason for non-high-level business model innovation.③The path to business model innovation for service-first enterprises and smart-first enterprises show significant differences. This research integrates the resource-based theory and the service-dominant logic in depth,expanding the explanatory boundaries of the resource-based theory in the context of digital intelligence servitization. It reveals the configurational complexity of the antecedents driving business model innovation through digital intelligence servitization,providing a theoretical foundation and pathway guidance for enterprises to undertake business model innovation relying on digital intelligence servitization.
王莉静, 郭辰雨, 杨晨, 李庆雪. 制造业企业数智服务化驱动商业模式创新的路径研究[J]. 中国科技论坛, 2025(10): 133-142.
Wang Lijing, Guo Chenyu, Yang Chen, Li Qingxue. The Pathway to Business Model Innovation Driven by Digital Intelligence Servitization of Manufacturing Enterprises. , 2025(10): 133-142.
[1] 王莉静,徐梦杰,徐莹莹,等. 企业数字化转型对服务化价值共创绩效的影响研究:基于合作网络视角[J]. 中国软科学,2024 (6):165-176. [2] AYALA N F,DA SILVA J R,TINOCO M A C,et al. Artificial Intelligence capabilities in Digital Servitization:Identifying digital opportunities for different service types[J]. International Journal of Production Economics,2025,284:109604. [3] SHEN L,SUN W,PARIDA V. Consolidating digital servitization research:A systematic review,integrative framework,and future research directions[J]. Technological Forecasting and Social Change,2023,191:122478. [4] 潘蓉蓉,罗建强,杨子超. 服务化与数字化的适配关系对制造企业经济绩效的影响:创新投入的调节作用[J]. 科学学与科学技术管理,2024,45 (11):118-132. [5] PASCHOU T,RAPACCINI M,ADRODEGARI F,et al. Digital servitization in manufacturing:A systematic literature review and research agenda[J]. Industrial Marketing Management,2020,89:278-292. [6] PAIOLA M,GEBAUER H. Internet of things technologies,digital servitization and business model innovation in BtoB manufacturing firms[J]. Industrial Marketing Management,2020,89:245-264. [7] PAIOLA M,GRANDINETTI R,KOWALKOWSKI C,et al. Digital servitization strategies and business model innovation:The role of knowledge-intensive business services[J]. Journal of Engineering and Technology Management,2024,74:101846. [8] 李全升,苏秦,高建民. 在位企业数字服务化转型的动力机制:基于主导逻辑转换的纵向案例研究[J]. 经济管理,2024,46 (10):86-105. [9] AGARWAL G K,SIMONSSON J,MAGNUSSON M,et al. Value-capture in digital servitization[J]. Journal of Manufacturing Technology Management,2022,33 (5):986-1004. [10] BARNEY J B. Resource-based theories of competitive advantage:A ten-year retrospective on the resource-based view[J]. Journal of Management,2001,27 (6):643-650. [11] 潘蓉蓉,罗建强,杨子超. 数字技术赋能制造企业服务化转型:理论分析与展望[J]. 系统工程理论与实践,2023,43 (11):3110-3128. [12] 于宝君,宫婷婷,朱慧敏,等. 数智技术应用与制造企业服务化转型:创新资源配置及双元创新能力的链式中介作用[J]. 科技进步与对策,2025,42 (8):57-68. [13] RUFFONI E P,REICHERT F M. Exploring configurations of digital servitization capabilities for value creation:An fsQCA approach[J]. Industrial Marketing Management,2024,122:131-144. [14] FANG K,WU X,ZHANG W,et al. Unfolding the resource configuration and interaction in digital servitization:An exploratory two-stage research design[J]. International Journal of Operations & Production Management,2025,45 (2):594-627. [15] 韵江,管煜,赵宏园. 服务主导逻辑下的商业模式创新研究[J]. 科研管理,2024,45 (12):150-159. [16] 武立东,李思嘉,王晗,等. 基于“公司治理—组织能力”组态模型的制造业企业数字化转型进阶机制研究[J]. 南开管理评论,2025,28 (5):4-15. [17] 杨亭亭,罗连化,许伯桐. 政府补贴的技术创新效应:“量变”还是“质变”?[J]. 中国软科学,2018 (10):52-61. [18] 綦良群,王曦研,刘晶磊. 基于服务化的中国先进制造业如何实现全球价值链升级[J]. 中国科技论坛,2023 (11):68-77,138. [19] 魏姗,方厚政. 智能制造如何赋能制造业企业环境绩效水平的提升?[J]. 科技管理学报,2025,27 (2):72-83. [20] 魏炜,朱武祥,林桂平. 基于利益相关者交易结构的商业模式理论[J]. 管理世界,2012 (12):125-131. [21] 顾振华. 服务外包激励服务业商业模式创新[J]. 世界经济研究,2023 (11):78-92,136. [22] 徐霞,赵明明,吴福象. 企业技术网络结构与关键核心技术创新速度:基于组合创新逻辑[J]. 中国工业经济,2024 (9):100-117. [23] 李婉红,王帆. 智能化转型、成本粘性与企业绩效:基于传统制造企业的实证检验[J]. 科学学研究,2022,40 (1):91-102. [24] 尚洪涛,宋岸玲. 工业互联网产业政策促进了企业数字化转型吗[J]. 科学学研究,2023,41 (11):1991-2003,2072. [25] FISS P C. Building better causal theories:A fuzzy set approach to typologies in organization research[J]. Academy of management journal,2011,54 (2):393-420. [26] 杜运周,孙宁,刘秋辰. 运用混合方法发展和分析复杂中介模型:以营商环境促进创新活力,协同新质生产力和“就业优先”为例[J]. 管理世界,2024,40 (6):217-237. [27] 杨雪,何玉成. 决策逻辑对新创企业商业模式创新的影响:资源整合能力的调节作用[J]. 管理工程学报,2022,36 (4):14-26.