Multi-Case Comparative Analysis of International AI Technology Foresight: The Perspective from Public Participation of Science
Yang Heng1, Fang Lingzhi2
1. School of Journalism and Communication, Shanghai University, Shanghai 200072, China; 2. School of Cultural Creativity and Management, Communication University of Zhejiang, Hangzhou 310018, China
Abstract:The disruptive technological innovation and social application of artificial intelligence (AI)make technology foresight for AI an important forward-looking strategic tool for gaining competitive advantage,and therefore a strategic concern for sovereign countries around the world.This study takes the AI technology foresight practices of the United States,the European Union,Japan,and India as the research objects.From the perspective of public participation of science,a combination of multiple case comparative analysis and thematic analysis is adopted to systematically compare the AI technology foresight practices of the research objects.Research has extracted four AI technology foresight orientations including power orientation,value orientation,function orientation,and development orientation,as well as the organizational mechanisms,action subjects,and impacts of public science participation under different orientations.Research suggests that the public participation of science not only provides diversified intellectual support for AI technology foresight,but also serves as an important tool for building social consensus and achieving scientific decision-making.China's AI technology foresight should be optimized in terms of foresight methods and organizational mechanisms.
杨恒, 方凌智. 国际人工智能技术预见多案例比较分析:科学公共参与的视角[J]. 中国科技论坛, 2025(8): 164-171.
Yang Heng, Fang Lingzhi. Multi-Case Comparative Analysis of International AI Technology Foresight: The Perspective from Public Participation of Science. , 2025(8): 164-171.
[1]WIRTZ B W,WEYERER J C,GEYER C.Artificial intelligence and the public sector-applications and challenges[J].International Journal of Public Administration,2019,42 (7):596-615. [2]陈龙,刘刚,戚聿东,等.人工智能技术革命:演进、影响和应对[J].国际经济评论,2024 (3):9-51. [3]杨捷,陈凯华,穆荣平.技术预见方法的回顾与展望[J].科学学与科学技术管理,2022,43 (12):3-14. [4]MILES I.The development of technology foresight:A review[J].Technological Forecasting and Social Change,2010,77 (9):1448-1456. [5]PIETROBELLI C,PUPPATO F.Technology foresight and industrial strategy[J].Technological Forecasting and Social Change,2016,110:117-125. [6]HASSANZADEH A,NAMDARIAN L,MAJIDPOUR M,et al.Developing a model to evaluate the impacts of science,technology and innovation foresight on policy-making[J].Technology Analysis & Strategic Management,2015,27 (4):437-460. [7]STELZER B,MEYER-BRÖTZ F,SCHIEBEL E,et al.Combining the scenario technique with bibliometrics for technology foresight:The case of personalized medicine[J].Technological Forecasting and Social Change,2015,98:137-156. [8]陈思懿,洪伟.公众参与科学的STS理论述评[J].科学与社会,2021,11 (3):40-60. [9]MAO C,KOIDE R,BREM A,et al.Technology foresight for social good:Social implications of technological innovation by 2050 from a Global Expert Survey[J].Technological Forecasting and Social Change,2020,153:119914. [10]STILGOE J,OWEN R,MACNAGHTEN P.Developing a framework for responsible innovation[J].Research Policy,2013,42 (9):1568-1580. [11]张辉,胡奕璇,曾雄.美国人工智能政策的多维度分析及其启示[J].科学学研究,2025,43 (6):1160-1169. [12]MEISSNER C A,REDLICH A D,BHATT S,et al.Interview and interrogation methods and their effects on true and false confessions[J].Campbell Systematic Reviews,2012,8 (1):1-53. [13]张元钊.人工智能发展与劳动力就业如何兼顾:兼谈典型发达国家经验启示[J].福建师范大学学报 (哲学社会科学版),2024 (2):45-55. [14]黄彩梅.美国智库人工智能人才建设议题研究:特点与认知[J].智库理论与实践,2025,10 (1):38-46. [15]董杨,张蕴萌,张雪然.基于公共责任的人工智能监管:美国的关键做法及启示[J].中国行政管理,2024 (1):112-120. [16]司孟韩,龙坤,徐能武.美国军事人工智能战略的调整:动因、影响与启示[J].情报杂志,2024,43 (12):1-9. [17]吴瑞鹏,李勇男,刘帅,等.基于DTM的美国人工智能战略热点主题及演化分析[J].情报杂志,2023,42 (12):134-143. [18]陈婷.获取竞争优势:美国生成式人工智能的军事应用[J].当代世界,2024 (5):32-37. [19]赵程程.美国国防人工智能战略的主题挖掘与演化特征分析[J].世界科技研究与发展,2024,46 (4):469-482. [20]陈凤仙,连雨璐,王娜.欧美人工智能监管模式及政策启示[J].中国行政管理,2024 (1):77-88. [21]严少华,杨昭.欧美人工智能治理模式比较及启示[J].战略决策研究,2024,15 (3):41-65. [22]赵悦.如何监管生成式人工智能在科学研究中的应用:风险与策略:基于欧盟和美国人工智能政策的分析[J].现代远程教育研究,2024,36 (6):20-29. [23]王恺乐,陈云伟,熊永兰.人工智能监管政策与措施的国际比较及启示[J].世界科技研究与发展,2024,46 (4):456-468. [24]邓美薇.日本人工智能的战略演进和发展愿景及其启示[J].日本问题研究,2022,36 (2):11-21. [25]陈祥.日本人工智能战略论析[J].大连理工大学学报 (社会科学版),2023,44 (5):18-27. [26]刘姣姣,黄膺旭,徐晓林.日本人工智能战略:机构、路线及生态系统[J].科技管理研究,2020,40 (12):39-45. [27]王威力,王玥珺.全球AI治理中的社会技术想象——人工智能发展规划的国际比较分析[J].情报资料工作,2025,46 (3):102-112. [28]孙志伟,殷浩铖.人工智能时代数字巨头的技术权力及其对 “全球南方” 的挑战[J].国际安全研究,2025,43 (2):142-164. [29]封帅,薛世锟,马依若.全球人工智能治理:多元化进程与竞争性图景[J].战略决策研究,2024,15 (3):87-108.