Abstract:Technology transaction is one of the main ways to transform scientific and technological achievements.Exploring the motivations of the formation and dissolution of trading relationships in the evolutionary process can reveal the mechanism that affects transactions from the perspective of the subject's behavior,thereby improving the efficiency of technological transactions and promoting the transformation of scientific and technological achievements.With the help of Separable Temporal Exponential Random Graph Model(STERGM),this article explores the evolutionary dynamics of the technology transaction network in different time periods of the integrated circuit industry from the perspective of proximity from five dimensions of geography,organization,society,institution,and technology.The results show that in the process of forming technology transaction relationships,the multi-dimensional proximity features at different stages have different significance,but they are all positive for the establishment of trading relationship.After the formation of the relationship,the proximity characteristics begin to have an impact on the adjustment stage.While the proximity between institutions,technology and society is beneficial to the long-term maintenance of the relationship,the geographical and organizational proximity will promote the dissolution of the transaction relationship.This conclusion clarifies the driving force of the evolution of technology transaction network,which is helpful to guide the reasonable choice of transaction behavior and maintain the stability of network relationship.
刘晓燕, 李金鹏, 单晓红, 杨娟. 多维邻近性视角下集成电路产业技术交易网络演化机制研究[J]. 中国科技论坛, 2022(5): 49-57.
Liu Xiaoyan, Li Jinpeng, Shan Xiaohong, Yang Juan. Research on the Evolution Mechanism of IC Industry Technology Trading Network from the Perspective of Multi-Dimensional Proximity. , 2022(5): 49-57.
[1]王宛秋,马红君.技术邻近性、研发投入与技术并购创新绩效:基于企业生命周期的视角[J].管理评论,2020,32(6):104-113.
[2]SUN Y,LIU K.Proximity effect,preferential attachment and path dependence in inter-regional network:a case of China's technology transaction[J].Scientometrics,2016,108(1):201-220.
[3]刘凤朝,肖站旗,马荣康.多维邻近性对技术交易网络的动态影响研究[J].科学学研究,2018,36(12):2205-2214.
[4]DRIVAS K,ECONOMIDOU C.Is geographic nearness important for trading ideas? Evidence from the US[J].The journal of technology transfer,2015,40(4):629-662.
[5]王崇锋,韩丰宇,晁艺璇,等.多维距离视角下区域专利技术转移影响因素研究——创新环境的调节效应[J].科技进步与对策,2019,36(8):52-59.
[6]刘承良,管明明,段德忠.中国城际技术转移网络的空间格局及影响因素[J].地理学报,2018,73(8):1462-1477.
[7]BIANCHI M,LEJARRAGA J.Learning to license technology:the role of experience and workforce's skills in Spanish manufacturing firms[J].R&D management,2016,46(S2):691-705.
[8]FERRARO G,IOVANELLA A.Technology transfer in innovation networks[J].International journal of engineering business management,2017,9(24):1-15.
[9]YANG Z,GAO S,YANG J.Emergence of biotechnology clusters:how prior structure affects formation of technology connections in Boston and San Diego from 1979 to 2006[J].Journal of high technology management research,2016,27(1):21-36.
[10]BOSCHMA R A.Proximity and innovation:a critical assessment[J].Regional studies,2005,39(1):61-74.
[11]陈文婕,曾德明.低碳技术合作创新网络中的多维邻近性演化[J].科研管理,2019,40(3):33-43.
[12]吕国庆,曾刚,顾娜娜.基于地理邻近与社会邻近的创新网络动态演化分析——以我国装备制造业为例[J].中国软科学,2014(5):97-106.
[13]ZHANGC,DANG X,PENG T,et al.Dynamic evolution of venture capital network in clean energy industries based on stergm[J].Sustainability,2019,11(22):1-25.
[14]KNOBEN J,OERLEMANS L A G.Proximity andinter-organizational collaboration:a literature review[J].International journal of management reviews,2010,8(2):71-89.
[15]BALLAND P A,BELSO-MARTÍNEZ J A,MORRISON A.The dynamics of technical and business knowledge networks in industrial clusters:embeddedness,status,or proximity[J].Economic geography,2016,92(1):35-60.
[16]阮平南,王文丽,刘晓燕.技术创新网络多维邻近性演化研究:基于IBM专利合作网络数据[J].科技进步与对策,2018,35(8):1-7.
[17]夏丽娟,谢富纪,王海花.制度邻近、技术邻近与产学协同创新绩效:基于产学联合专利数据的研究[J].科学学研究,2017,35(5):782-791.
[18]余谦,刘嘉玲.技术邻近动态下创新超网络的演化机理研究[J].科学学研究,2018,36(5):946-954.
[19]NOOTEBOOM B,VAN HAVERBEKE W,DUYSTERS G,et al.Optimal cognitive distance and absorptive capacity[J].Research policy,2007,36(7):1016-1034.
[20]刘雯,马晓辉,刘武.中国大陆集成电路产业发展态势与建议[J].中国软科学,2015,299(11):191-197.
[21]HEANEY M T.Multiplex networks and interest group influence reputation:an exponential random graph model[J].Social networks,2014,36(1):66-81.
[22]KRIVITSKY P N,HANDCOCK M S.A separable model for dynamic networks[J].Journal of the royal statal society,2014,76(1):29-46.
[23]赵炎,王琦,郑向杰.网络邻近性、地理邻近性对知识转移绩效的影响[J].科研管理,2016,37(1):128-136.
[24]夏丽娟,谢富纪.多维邻近视角下的合作创新研究评述与未来展望[J].外国经济与管理,2014,36(11):45-54.
[25]JAFFE A B.Demand and supply influences in R&D intensity and productivity growth[J].The review of economics and statistics,1988,70(3):431-437.
[26]DANNEELS E.The dynamics of product innovation and firm competences[J].Strategic management journal,2002,23(12):1095-1121.
[27]LUSHER D,KOSKINEN J,ROBINS G.Exponential random graph models for social networks:theories,methods and applications[J].Social networks,2013,31(1):12-25.
[28]唐晓彬,崔茂生.“一带一路”货物贸易网络结构动态变化及其影响机制[J].财经研究,2020,46(7):138-153.