|
|
Can Data Element Marketization Promote the Development of Firm New Quality Productivity Forces ——From the Perspective of Factor Configuration and Organizational Operations |
Su Zhiwen1, Liu Ran2, Liu Chuanming2 |
1. School of Economics,Beijing Institute of Technology,Beijing 100081,China; 2. School of Economics,Shandong University of Finance and Economics,Jinan 250014,China |
|
|
Abstract This study adopted matched data from Chinese cities and Shanghai and Shenzhen A-share listed companies between 2009 and 2022,using the construction of data trading platforms as a quasi-natural experiment.It employed a staggered difference-in-differences (SDID)model to investigate the mechanisms and effects of data element marketization on firm new quality productivity forces.The research findings are as follows:First,data element marketization can directly enhance the development of firm new quality productivity forces.This conclusion remains robust after controlling for confounding policy shocks,placebo tests,endogeneity tests,and robustness checks.Second,data element marketization exerts factor configuration effects and organizational operation effects on firm new quality productivity forces.Specifically,it optimizes the configuration of labor,capital,and technology production factors,while reinforcing organizational support,reducing management costs,and promoting business innovation,thereby fostering the development of firm new quality productivity forces.Third,data element marketization has a stronger effect on the new quality productivity forces of non-labor-intensive,capital-intensive,and technology-intensive industries.It is essential to advance the construction and optimization of data trading platforms,strengthen auxiliary support for data element marketization,and formulate differentiated data element marketization policies.This study offers significant insights for advancing data element marketization,promoting the development of firm new quality productivity forces,and driving high-quality economic growth.
|
Received: 06 October 2024
|
|
|
|
|
[1]黄群慧,盛方富.新质生产力系统:要素特质、结构承载与功能取向[J].改革,2024(2):15-24. [2]刘志彪.新质生产力驱动下的新型生产关系:趋势、挑战与对策[J].财贸经济,2024(8):5-12. [3]焦勇,高月鹏.数据要素赋能新质生产力涌现:供给创新与需求牵引的解释[J].新疆社会科学,2024(4):38-51,173. [4]吴江,冯定国.加快形成新质生产力的人才驱动策略[J].当代经济管理,2024,46(9):20-28. [5]郑国强,张馨元,赵新宇.数据要素市场化能否促进企业绿色创新?基于城市数据交易平台设立的准自然实验[J].上海财经大学学报,2024,26(3):33-48. [6]夏杰长,杨昊雯.平台经济:我国经济行稳致远的重要力量[J].改革,2023(2):14-27. [7]何玉长,王伟.数据要素市场化的理论阐释[J].当代经济研究,2021(4):33-44. [8]徐翔,厉克奥博,田晓轩.数据生产要素研究进展[J].经济学动态,2021(4):142-158. [9]刘伟.科学认识与切实发展新质生产力[J].经济研究,2024,59(3):4-11. [10]周文,许凌云.论新质生产力:内涵特征与重要着力点[J].改革,2023(10):1-13. [11]董庆前.中国新质生产力发展水平测度、时空演变及收敛性研究[J].中国软科学,2024(8):178-188. [12]傅联英,蔡煜.中国市域新质生产力:时序演变、组群特征与发展策略[J].产业经济评论,2024(4):5-22. [13]朱迪,叶林祥.中国农业新质生产力:水平测度与动态演变[J].统计与决策,2024,40(9):24-30. [14]姚树洁,蒋艺翅.数字基础设施与企业新质生产力形成:理论与实证[J].东北师大学报(哲学社会科学版),2024(5):1-12. [15]孙献贞,李言,高雨晨.数字普惠金融发展与企业新质生产力[J].兰州学刊,2024(7):54-67. [16]谢家平,郑颖珊,董旗.供应链数智化建设赋能制造企业新质生产力:基于供应链创新与应用试点城市建设的准自然实验[J].上海财经大学学报,2024,26(5):15-29. [17]刘家民,马晓钰.数智化创新政策如何推动企业新质生产力发展[J].西部论坛,2024,34(4):17-34. [18]陆扬,王育宝.数据要素市场化与新质生产力发展:基于双重机器学习的因果推断[J].城市问题,2024(7):80-90. [19]赵丽,胡植尧.数据要素、动态能力与企业全要素生产率——破解“数据生产率悖论”之谜[J].经济管理,2024,46(7):55-72. [20]徐晔,王志超.数据要素市场化建设与企业数字化转型:基于数据交易平台的准自然实验[J].软科学,2024,38(9):24-39. [21]张会平,赵溱,马太平,等.我国数据要素市场化流通的两种模式与生态系统构建[J].信息资源管理学报,2023,13(6):29-42. [22]姚加权,张锟澎,郭李鹏,等.人工智能如何提升企业生产效率?基于劳动力技能结构调整的视角[J].管理世界,2024,40(2):101-116,133,117-122. [23]李弦.数据要素赋能新质生产力的理论逻辑与实践进路:基于马克思劳动过程理论的分析[J].上海经济研究,2024(5):25-36. [24]张夏恒,刘彩霞.数据要素推进新质生产力实现的内在机制与路径研究[J].产业经济评论,2024(3):171-184. [25]许中缘,郑煌杰.数据要素赋能新质生产力:内在机理、现实障碍与法治进路[J].上海经济研究,2024(5):37-52. [26]WU K D,LIU S Z,ZHU M C,et al.The impact of digital transformation on resource mismatch of Chinese listed companies[J].Scientific Reports,2024,14(1):1-12. [27]戴魁早,王思曼,黄姿.数据要素市场发展与生产率提升[J].经济管理,2023,45(6):22-43. [28]王超,余典范,龙睿.经济政策不确定性与企业数字化——垫脚石还是绊脚石?[J].经济管理,2023,45(6):79-100. [29]张永珅,李小波,邢铭强.企业数字化转型与审计定价[J].审计研究,2021(3):62-71. [30]吴非,胡慧芷,林慧妍,等.企业数字化转型与资本市场表现——来自股票流动性的经验证据[J].管理世界,2021,37(7):130-44,10. [31]宋佳,张金昌,潘艺.ESG发展对企业新质生产力影响的研究——来自中国A股上市企业的经验证据[J].当代经济管理,2024,46(6):1-11. [32]赵国庆,李俊廷.企业数字化转型是否赋能企业新质生产力发展:基于中国上市企业的微观证据[J].产业经济评论,2024(4):23-34. [33]张子尧,黄炜.事件研究法的实现、问题和拓展[J].数量经济技术经济研究,2023,40(9):71-92. [34]DE CHAISEMARTIN C,D'HAULTFUILLE X.Two-way fixed effects estimators with heterogeneous treatment effects[J].Am Econ Rev,2020,110(9):2964-2996. [35]SUN L,ABRAHAM S.Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[J].Journal of Econometrics,2021,225(2):175-199. [36]方锦程,刘颖,高昊宇,等.公共数据开放能否促进区域协调发展?来自政府数据平台上线的准自然实验[J].管理世界,2023,39(9):124-142. [37]黄群慧,余泳泽,张松林.互联网发展与制造业生产率提升:内在机制与中国经验[J].中国工业经济,2019(8):5-23. [38]蔡运坤,周京奎,袁旺平.数据要素共享与城市创业活力——来自公共数据开放的经验证据[J].数量经济技术经济研究,2024,41(8):5-25. [39]尹美群,盛磊,李文博.高管激励、创新投入与公司绩效:基于内生性视角的分行业实证研究[J].南开管理评论,2018,21(1):109-117. [40]江艇.因果推断经验研究中的中介效应与调节效应[J].中国工业经济,2022(5):100-120. [41]李麦收,李华.国家大数据综合试验区设立能缓解城市经济发展不平衡吗?[J].经济经纬,2024,41(3):16-27. [42]任英华,刘宇钊,李海彤.人工智能技术创新与企业全要素生产率[J].经济管理,2023,45(9):50-67. |
|
|
|