|
|
Development of Big Data,Innovation Ecology, and Quality of Enterprise Technological Innovation ——Quasi Natural Experiments Based on National Big Data Comprehensive Experimental Zones |
Chen Dan1, Ren Xiaogang2, Xie Xianjun3 |
1. Hainan Province Social Governance Innovation and Talent Training Research Base;Haikou 570100,China; 2. Beijing Academy of Science and Technology,Beijing 100089,China; 3. School of Government Management,Peking University,Beijing100871,China |
|
|
Abstract This article empirically tests the impact,mechanism,heterogeneity,and moderating effect of big data development on the quality of enterprise technological innovation based on quasi natural experiments in national big data pilot zones.Research has shown that the development of big data has a significant impact on improving the quality of enterprise technological innovation.The development of big data brings about higher information transmission effects,increased R&D cooperation,lower financing constraints,increased technological innovation risk investment,and higher innovation factor clustering effects,promoting talent factor clustering,technology factor clustering,capital factor clustering,and data factor clustering,thereby promoting the optimization of innovation ecology and significantly improving the quality of enterprise technological innovation.The impact of big data development on the quality of enterprise technological innovation varies across different enterprise lifecycles.The improvement effect is significant in the growth and maturity stages of the enterprise,but not significant in the recession stage.The effect of big data development on improving the qualityof enterprise technological innovation is relatively stronger inareas with higher optimizationof the innovation ecosystem due to the strengthening effectof innovation policies, while inareas with lower optimizationof the innovation ecosystem, its improvement effect is relatively weaker due to the strengthening effect of innovation policies.
|
Received: 18 October 2023
|
|
|
|
|
[1]杨松令,刘梦伟,张秋月.中国金融科技发展对资本市场信息效率的影响研究[J].数量经济技术经济研究,2021,38(8):125-144. [2]李海奇,张晶.金融科技对我国产业结构优化与产业升级的影响[J].统计研究,2022,39(10):102-118. [3]吴心弘,裴平.金融科技、全要素生产率与数字经济增长[J].经济与管理研究,2022,43(7):16-36. [4]谢贤君,郁俊莉.融资结构与企业数字化转型:基于直接融资与间接融资的视角[J].经济经纬,2023,40(5):99-112. [5]彭俞超,马思超.非银行金融科技与上市公司借贷成本——竞争压力还是信息溢出[J].金融研究,2022,454(12):93-111. [6]李真,李茂林,朱林染.银行金融科技与企业金融化:基于避险与逐利动机[J].世界经济,2023,46(4):140-169. [7]盛天翔,范从来.金融科技、最优银行业市场结构与小微企业信贷供给[J].金融研究,2020,411(6):114-132. [8]宋敏,周鹏,司海涛.金融科技与企业全要素生产率——“赋能”和信贷配给的视角[J].中国工业经济,2021,545(4):138-155. [9]张叶青,陆瑶,李乐芸.大数据应用对中国企业市场价值的影响——来自中国上市公司年报文本分析的证据[J].经济研究,2021,56(12):42-59. [10]任曙明,马橙.大数据应用与中国企业创新资源错配[J].科学学研究,2024,42(1):194-204. [11]高玉强,王子帅,张宇.大数据应用如何抑制企业投融资期限错配——资源效应与信息效应[J].金融论坛,2023,28(10):36-47. [12]刘传明,陈梁,魏晓敏.数据要素集聚对科技创新的影响研究:基于大数据综合试验区的准自然实验[J].上海财经大学学报,2023,25(5):107-121. [13]陶长琪,丁煜.数据要素何以成为创新红利——源于人力资本匹配的证据[J].中国软科学,2022,358(5):45-56. [14]张杰,郑文平.创新追赶战略抑制了中国专利质量么[J].经济研究,2018,53(5):28-41. [15]陶锋,赵锦瑜,周浩.环境规制实现了绿色技术创新的“增量提质”吗——来自环保目标责任制的证据[J].中国工业经济,2021,358(2):136-154. [16]田鸽,张勋.数字经济、非农就业与社会分工[J].管理世界,2022,38(5):72-84. [17]王海,闫卓毓,郭冠宇,等.数字基础设施政策与企业数字化转型:“赋能”还是“负能”[J].数量经济技术经济研究,2023,40(5):5-23. [18]孙红雪,朱金鹤.自由贸易试验区设立能否增强中国产业链韧性?基于多种创新要素集聚的中介机制检验[J].现代经济探讨,2023,545(11):72-84. [19]罗泰晔,张振刚.数据赋能制造业企业创新:逻辑框架与过程机理[J].中国科技论坛,2023(7):95-105. [20]MUDMBI R,SWIFT T.Knowing when to leap:transitioning between exploitative and explorative R&D[J].Strategic Management Journal,2014,35(1):126-145. [21]黄宏斌,翟淑萍,陈静楠.企业生命周期、融资方式与融资约束:基于投资者情绪调节效应的研究[J].金融研究,2016,322(7):96-112. [22]刘诗源,林志帆,冷志鹏.税收激励提高企业创新水平了吗?基于企业生命周期理论的检验[J].经济研究,2020,55(6):105-121. |
|
|
|