|
|
Research on the Effect of Policy on the Empowerment Reform of Job-Related Scientific and Technological Achievements: Causal Inference Based on Double Machine Learning |
Tang Yichao1, Pan Chengli2, Li Jing1, Xiao Guohua1, Ma Shiying1, Ma Yucong1 |
1. National Science LibraryChengdu,Chinese Academy of Sciences,Chengdu 610299,China; 2. Chinese Academy of Sciences Holdings Co.,Ltd.,Beijing 100090,China |
|
|
Abstract The empowerment reform of job-related scientific and technological achievements is an important measure to promote the deep integration of science and technology with the economy and cultivate new quality productive forces.This paper constructs a dataset based on the patent data of 76 universities and research institutions from 2014 to 2023,and designs a quasi-natural experiment based on the“the Pilot Implementation Plan for Empowering Scientific and Technological Achievements Ownership or Long-term Use Right to Scientific Researchers”jointly issued by the Ministry of Science and Technology and another nine ministries in 2020.A double machine learning model is built to verify the promoting effect of the empowerment reform policy on the transformation of scientific and technological achievements,its promoting mechanism,and the heterogeneity of the promoting effect.The research finds that the empowerment reform can promote the transformation of scientific and technological achievements,mainly through promoting the collaboration of multiple innovation subjects.However,the three mechanisms of property rights structure change,increase in the quantity and quality of scientific and technological achievements have not shown significant effects yet.In addition,the promoting effect on the transformation of scientific and technological achievements varies due to the differences in the affiliation level and the nature of the units,with more obvious effects in central units and universities.Based on these findings,policy suggestions are proposed to improve the management mechanism of achievements,optimize the implementation mechanism of transformation,and build a complete transformation service system.
|
Received: 10 September 2024
|
|
|
|
|
[1]黄宁.国有资产管理制度与科技成果转化制度的冲突和协调[J].科技管理研究,2023,43(16):22-30. [2]张玉强,翟雨林.职务科技成果赋权改革:制度内涵、实践探索及创新发展[J].科技和产业,2023,23(10):94-102. [3]宋伟,胡蝶,葛章志.赋权改革背景下职务科技成果共有权行使的风险及其防控[J].科技管理研究,2023,43(8):151-157. [4]张岭,李怡欢,李冬冬.科研人员职务科技成果赋权的困境与对策研究[J].科学学研究,2023,41(4):679-687. [5]刘鑫,李婷婷,陈光.职务发明权属“混合所有制”政策试点起作用了吗[J].科学学研究,2020,38(7):1197-1206. [6]吴寿仁.为什么要大力推行职务科技成果赋权[J].科技中国,2024(2):60-64. [7]铁怀江,饶世权.利益相关者对高校科研院所职务科技成果专利权分享方式的态度研究[J].中国高校科技,2023(11):83-89. [8]高盼军,戚湧.高校职务科技成果混合所有制实施路径的优化[J].科技管理研究,2024,44(9):92-99. [9]唐素琴,魏旭丹.职务科技成果“赋权”改革的实证分析及思考[J].科技与法律(中英文),2024(3):57-67. [10]陈光,钟方媛,明翠琴,等.同源异流?基于IAD框架的职务科技成果混合所有制改革试点效果差异化机理研究[J].科技管理研究,2022,42(21):24-31. [11]OUCHI W G,BOLTON M K.The logic of joint research and development[J].California Management Review,1988,30(3):09-33. [12]ARROW K J.The economic implications of learning by doing[J].Review of Economic Studies,1962,29(3). [13]LACH S,SCHANKERMAN M.Incentives and invention in universities[J].The Rand Journal of Economics,2008,39(2):403-433 [14]徐静,冯锋,张雷勇,等.我国产学研合作动力机制研究[J].中国科技论坛,2012(7):74-80. [15]刘则渊,陈悦.新巴斯德象限:高科技政策的新范式[J].管理学报,2007(3):346-353. [16]ADAM D M.Intellectual property & information control[M].New Brunswick:Transaction Publisher,2001. [17]任知洋,梅术文.科技成果权属混合所有制对高校创新效率的影响[J].科技进步与对策,2023,40(4):88-96. [18]SANTACREU A M.Innovation,diffusion and trade:Theory and measurement[J].Journal of Monetary Economics,2015,75:1-20. [19]徐兴祥,俞仕琳.职务科技成果混合所有制改革的实践成效及完善建议:基于四川省33家改革试点单位的实证分析[J].中国科技论坛,2022(12):108-116. [20]陈东.职务发明专利权属结构对专利质量的影响研究:来自职务科技成果混合所有制改革的证据[J].科技与经济,2023,36(6):86-90. [21]张俊艳,雷玲,高文.“三权”下放改革试点政策是否促进了科研院所专利技术转移:基于合成控制法的分析[J].科技管理研究,2022,42(4):46-52. [22]CHERNOZHUKOV V,CHETVERIKOV D,DEMIRE R,et al.Double/debiased machine learning for treatment and structural parameters[J].The Econometrics Journal,2018,21(1):C1-C68. [23]YANG J,CHUANG H,KUAN C.Double Machine learning with gradient boosting and its application to the Big N audit quality effect[J].Journal of Econometrics,2020,216(1),268-283 [24]王茹婷,彭方平,李维,等.打破刚性兑付能降低企业融资成本吗[J].管理世界,2022,38(4):42-64. [25]张涛,李均超.网络基础设施、包容性绿色增长与地区差距:基于双重机器学习的因果推断[J].数量经济技术经济研究,2023,40(4):113-135. [26]GAO P,LI X,ZHANG G.et al.The impact mechanism of ownership change on university innovation[J].Scientific Reports,2023,13(1),23078. [27]LANJOUW J O,SCHANKERMAN M.Characteristics of patent litigation:A window on competition[J].The Rand Journal of Economics,2001,32(1):129-151. [28]尹志锋,曹爱家,郭家宝,等.基于专利数据的人工智能就业效应研究:来自中关村企业的微观证据[J].中国工业经济,2023(5):137-154. [29]江艇.因果推断经验研究中的中介效应与调节效应[J].中国工业经济,2022(5):100-120. [30]张栋,薛澜,梁正,等.职务科技成果权属改革全方位法规体系协调研究[J].科技进步与对策,2024,41(15):1-11. [31]王影航,黄训波,李金惠,等.高校职务科技成果资产管理的制度困境与出路:以“放管服”的现实视角为观照点[J].中国高校科技,2023(4):81-88. [32]张玺,程志会.天津完善机制解绑成果转化“细绳子”[N].工人日报,2022-04-27(7). [33]郝远.高校科技成果转化的障碍与途径[J].清华大学教育研究,2004(3):97-101. [34]李孔岳.科技成果转化的模式比较及其启示[J].科技管理研究,2006(1):88-91. [35]陈黎,玄兆辉.政府属科研机构科技成果转化影响因素研究:以广州为例[J].中国科技论坛,2022(11):45-55. [36]陈洁.高校产学研合作网络位置、双元创新对高校科技成果转化的影响[D].武汉:武汉科技大学,2022. |
|
|
|